COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

ON DEPTH FIRST SEARCH TREES IN m-OUT DIGRAPHS

W. C. STEPHEN SUEN

Received March 10, 1989 Revised September 27, 1992

We consider depth first search (DFS for short) trees in a class of random digraphs: a m-out model. Let π_i be the i^{th} vertex encountered by DFS and L(i,m,n) be the height of π_i in the corresponding DFS tree. We show that if $i/n \to \alpha$ as $n \to \infty$, then there exists a constant $a(\alpha,m)$, to be defined later, such that L(i,m,n)/n converges in probability to $a(\alpha,m)$ as $n \to \infty$. We also obtain results concerning the number of vertices and the number of leaves in a DFS tree.

1. Introduction and Main Results

DFS algorithms are very useful in graph theory because they are efficient [10]. This paper is inspired by the papers [1,4] where algorithms and methods similar to depth first search were used to find long paths in random graphs. Here, we consider DFS trees in the context of a random m-out digraph model which is defined as follows. We say that a digraph is m-out if every vertex in the digraph has exactly m out-going edges (including loops and multiple edges if any) which are numbered from 1 to m. The random digraph D(m,n) is obtained by randomly picking a digraph, with equal probability, from the set of all m-out digraphs with n vertices v_1, v_2, \ldots, v_n . In fact, it is easily shown that D(m,n) can be obtained from the following constructive method. We assume that each vertex v in D(m,n) has m different coupons. Each coupon entitles v to pick a vertex from $\{v_1, v_2, \ldots, v_n\}$ randomly and independently of others with equal probability 1/n. If w is the vertex picked using the ith coupon, then we say that D(m,n) contains an edge directed from vertex v to w with label i.

We apply the following DFS algorithm to D(m,n). Note that unlike usual notation for directed edges, we use (i,v) to denote the edge with label i directed from vertex v. We also use $\varphi(i,v)$ to denote the vertex that edge (i,v) is incident to.

```
algorithm DFS (see [5])
Procedure DF (v)
Begin
          DFI(v) := i
          i := i + 1
          for j := 1 to m do
               if DFI (\varphi(j,v)) = 0 then
               begin
                    F := F \cup \{ \text{edge } (j, v) \}
                    DF (\varphi(j,v))
               end
end {DF}
Begin {MainProgram}
          DFI(v) := 0 for all vertices v in the graph
          F := \text{empty set } \emptyset
          i := 1
          for k := 1 to n do
               if DFI (v_k) = 0 then DF (v_k)
          output F which contains the edges of the forest of DFS trees
end {MainProgram}
```

The DFS algorithm uses a depth first index DFI (v), where DFI (v) = k iff v is the k^{th} vertex picked by the DFS algorithm. We use π_k to denote the k^{th} vertex picked (ie. DFI $(\pi_k) = k$) and so DFS in fact gives us a sequence $\Pi = \{\pi_1, \pi_2, \ldots, \pi_n\}$, where $\pi_1 = v_1$. Let $S_k = V_n \setminus \{\pi_1, \pi_2, \ldots, \pi_k\}$. Note that DFS picks π_{k+1} from S_k by examining edges in $\{(i, \pi_j) : i = 1, \ldots, m, \ j = 1, \ldots, k\}$ that have not been examined before. Thus each edge inspection is independent of previous edge inspections. At each edge inspection, the edge (i, π_j) is inspected if j is the maximum and i is the minimum among all other edges available for inspection. In examining (i, π_j) , if $\varphi(i, \pi_j) \in S_k$ (in which case the examination is said to be successful) then $\pi_{k+1} = \varphi(i, \pi_j)$, otherwise DFS examines another edge. If at any stage when the edges from a vertex π_j $(j \le k)$ have all been examined and yet π_{k+1} has not been picked, then DFS backtracks to the parent of π_j in the DFS tree. In the case where all edges emanating from π_1, \ldots, π_k have all been examined without having picked π_{k+1} , then the algorithm "restarts" by simply picking a new vertex v_l where l is the minimum so that v_l has not been picked before. The spanning subgraph of D(m,n) containing only those edges in F obtained using algorithm DFS is therefore a forest.

When m=1, we have a random mapping and the probability of having a DFS tree with k+1 vertices (and with a given root) is bounded above by

$$(1-1/n)(1-2/n)\dots(1-k/n) \le e^{-k^2/2n}$$

which goes to 0 as $n \to \infty$ if $k \ge n^{1/2+\varepsilon}$, $\varepsilon > 0$. Since we are interested in order n properties, we shall focus our attention on $m \ge 2$. The following results will be shown in subsequent sections.

Theorem 1. Let N(m,n) be the number of vertices in the DFS tree with root $v_1 = \pi_1$. Then for any $\varepsilon > 0$,

$$P(|n^{-1}N(m,n)-1+y(m)| \ge \varepsilon) = O(n^{-m})$$
 as $n \to \infty$,

where y(m) is the smallest root of the equation: $y = \exp\{m(y-1)\}.$

Theorem 2. Let $N_L(m,n)$ be the number of leaves in the DFS tree with root π_1 . Then for any $\varepsilon > 0$,

$$P(|n^{-1}N_L(m,n) - (1-y)^{m+1}/(m+1)| \ge \varepsilon = O(n^{-1})$$
 as $n \to \infty$,

where y = y(m) is the smallest root of $y = e^{m(y-1)}$.

Standard analysis (e. g. Lagrange expansion formula in [6]) shows that

$$y(m) = \begin{cases} 1 & \text{if } 0 \le m \le 1 \\ m^{-1} \sum_{k=1}^{\infty} k^{k-1} (me^{-m})^k / k! < 1 & \text{if } m > 1. \end{cases}$$

For any given $i=1,2,\ldots,n$, let $\Pi=\Pi_i=\{\pi_1,\pi_2,\ldots,\pi_i\}$ be the sequence of vertices encountered by DFS until vertex π_i is picked. In Π , there are vertices past which DFS has backtracked. We use black to colour those vertices. Let L'(i,m,n) be the number of non-black vertices in Π . Then we have the following two theorems on L'(i,m,n).

Theorem 3. Suppose that $i/n \to \lambda$ as $n \to \infty$. If $\lambda \in (0, 1-1/m)$, then for any $\varepsilon > 0$,

$$P(|n^{-1}L'(i, m, n) - b(\lambda, m)| \ge \varepsilon) = O(n^{-m})$$
 as $n \to \infty$,

where

$$b(\zeta, m) = \int_{0}^{\zeta} (1 - x(\beta, m))d\beta,$$

and $x(\beta,m)$ is the smallest positive root of $x = (\beta + x - x\beta)^m$. Note that for β in (0,1-1/m),

$$x(\beta, m) = \beta^m \sum_{k=0}^{\infty} \frac{1}{k+1} {mk+m \choose k} (\beta^{m-1}(1-\beta))^k.$$

Theorem 4. Suppose that $i/n \to \lambda$ as $n \to \infty$. If $\lambda \in (1 - 1/m, 1 - y(m))$, then for any $\varepsilon > 0$,

$$P(|n^{-1}L'(i, m, n) - a(\lambda, m)| \ge \varepsilon) = O(n^{-m})$$
 as $n \to \infty$,

where $a(\lambda,m)=b(1-(1-\lambda)\gamma,m)$ and γ is the largest root of the equation $\gamma=e^{m(1-\lambda)(\gamma-1)}$.

Define L(i,m,n) as the height of π_i in the DFS tree with root π_1 . If π_i is in the DFS tree with root π_1 , then L(i,m,n)=L'(i,m,n)-1. Using this observation and the facts that $b(\alpha,m)$ is continuous in α and b(0,m)=0, the following result follows immediately from Theorems 1, 3 and 4.

Theorem 5. Let L(i, m, n) be the height of π_i in the DFS tree with root π_1 . Suppose that $i/n \to \lambda$ as $n \to \infty$. If $\lambda \in [0, 1 - y(m))$, then

$$P(|n^{-1}L(i, m, n) - a(\lambda, m)| \ge \varepsilon) = O(n^{-m})$$
 as $n \to \infty$,

where

$$a(\lambda,m) = \begin{cases} b(\lambda,m) & \text{if } \lambda \in [0,1-1/m] \\ b(1-(1-\lambda)\gamma,m) & \text{if } \lambda \in (1-1/m,1-y(m)) \end{cases}$$

and γ is the largest root of $\gamma = e^{m(1-\lambda)(\gamma-1)}$.

Also, $(1-\lambda)\gamma$ increases as λ increases from 1-1/m (see Lemma 7 in Section 5). Therefore $a(\lambda,m)$ is at maximum when $\lambda=1-1/m$. We can draw the following conclusion from Theorems 1, 3 and 4.

Theorem 6. Let H(m,n) be the height of the DFS tree with root π_1 , then for any $\varepsilon > 0$,

$$P(|n^{-1}H(m,n) - b(1-1/m,m)| \ge \varepsilon) = O(n^{-m})$$
 as $n \to \infty$.

Also, if π_{τ} is the vertex at which the DFS tree with root π_1 attains its maximum height, then for any $\varepsilon > 0$,

$$P(|\tau - n(1 - 1/m)| \ge \varepsilon n) = O(n^{-m})$$
 as $n \to \infty$.

The random digraph D(m,n) studied in this paper is different from, but very similar to, the usual m-out digraphs appeared, for example, in [3]. The reason for choosing D(m,n) here is to minimize unnecessary notation. Note that Theorems 5 and 6 imply that if DFS is used to find a directed path in D(m,n), then the length of the longest path found is about nb(1-1/m,m). The methods in this paper can be applied to investigate the DFS trees in other random graph models. In particular in [7], DFS is applied to the well known $G_{n,p(n)}$ model (see for example Bollobás [2] and a result on long paths similar to those in [1,4] is obtained. For related results and references on long paths and long cycles in sparse random graphs, please refer to [2]. DFS can also be used to study the largest strongly connected subgraph in D(m,n) (see [8]) as well as long induced paths and large induced trees in $G_{n,p(n)}$ (see[9]). The reader is referred to [5] for references and results related to DFS on graphs.

Theorems 1, 2, 3, and 4 are shown respectively in Sections 2, 3, 4 and 5. Theorems 5 and 6 follow immediately from Theorems 1, 3 and 4.

2. Proof of Theorem 1

Note that after the first DFS tree is found, DFS "restarts" by simply picking a new vertex. This creates some complication because DFS normally picks a new vertex by examining edges. In order to avoid this complications, we add out-going edges (j, v_1) , $j \ge m+1$ to the vertex $\pi_1 = v_1$ where each $\varphi(j, v_1)$ is independently

chosen from $\{v_1, \ldots, v_n\}$ with equal probability. We call this new random graph model D'(m,n). After π_i is obtained, let $Z_{i,n}$ be the number of additional edge inspections used before π_{i+1} is picked in D'(m,n). Then as each edge inspection is independent of previous edge inspections, the quantity $Z_{i,n}$ is geometrically distributed with distribution given by

$$P(Z_{i,n} = j) = (1 - i/n)(i/n)^{j-1}, \quad j = 1, 2, \dots$$

and $\{Z_{i,n}: i=1,2,\ldots,n-1\}$ is a set of mutually independent random variables. Let $U_n(k)$ be the number of edges inspected when vertex π_{k+1} is picked. Then

$$U_n(k) = \sum_{i=1}^k Z_{i,n}.$$

Note that π_{k+1} is in the DFS tree with root π_1 in D(m,n) if and only if none of the edges in $\{(i,\pi_1): i \geq m+1\}$ have been inspected while picking $\pi_2,\pi_3,\ldots,\pi_{k+1}$. That is, N(m,n) > k if and only if $U_n(1) \leq m$, $U_n(2) \leq 2m,\ldots,U_n(k) \leq km$. Hence for $k \geq 1$,

(1)
$$P(N(m,n) > k) = P(U_n(1) \le m, \ U_n(2) \le 2m, \ \dots, \ U_n(k) \le km).$$

We shall use equation (1) and the following estimates of $U_n(k)$ to show Theorem 1. Note that throughout the rest of this paper, we shall use ε to denote a generic positive constant, ϱ to denote a number in (0,1) and η to denote a positive number. The numbers ϱ and η may depend on some other constants but not on n.

Lemma 1. Let $\varepsilon > 0$ and $\delta \in (0,1)$ be positive constants. Suppose that k = k(n) satisfies $k/n \to \alpha \in (0,\delta)$. Then there exists $\varrho = \varrho(\varepsilon,\delta)$ in (0,1) such that for all sufficiently large n, we have

$$P(|U_n(k) + n\log(1 - k/n)| \ge \varepsilon n) \le \varrho^n.$$

Proof. For $t \le -\log(k/n) = -\log \alpha + o(1)$,

$$E[\exp(tU_n(k) + nt\log(1 - k/n))]$$

$$= \prod_{l=1}^{k} \{e^{t} (1 - l/n)(1 - e^{t} l/n)^{-1}\} e^{nt \log(1 - k/n)} = \{\exp(f_n(t))\}^n,$$

where
$$f_n(t) = \frac{kt}{n} + \frac{1}{n} \sum_{l=1}^{k} \log(1 - l/n) - \frac{1}{n} \sum_{l=1}^{k} \log(1 - e^t l/n) + t \log(1 - k/n).$$

Since $\frac{1}{n} \sum_{l=1}^{k} \log(1 - l/n)$ is bounded below and above by

$$-1 - \left(1 - \frac{k+1}{n}\right) \log\left(1 - \frac{k+1}{n}\right)$$
 and $-1 - \left(1 - \frac{k}{n}\right) \log\left(1 - \frac{k}{n}\right)$,

and $\frac{1}{n}\sum_{l=1}^{k}\log(1-e^{t}l/n)$ is bounded below and above by

$$-1 - e^{-t} \left(1 - e^t \frac{k+1}{n} \right) \log \left(1 - e^t \frac{k+1}{n} \right) \quad \text{and} \quad$$

$$-1 - e^{-t} \left(1 - e^t \frac{k}{n} \right) \log \left(1 - e^t \frac{k}{n} \right),$$

we have that

$$f(\alpha, t) = \lim_{n \to \infty} f_n(t)$$

= $\alpha t - (1 - \alpha) \log(1 - \alpha) + e^{-t} (1 - e^t \alpha) \log(1 - e^t \alpha) + t \log(1 - \alpha).$

Note that since $\frac{\partial f(\alpha,t)}{\partial \alpha} > 0$ for all $t \neq 0$, we have that

$$f(\alpha, t) \le \delta t - (1 - \delta) \log(1 - \delta) + e^{-t} (1 - e^{-t} \delta) \log(1 - e^{t} \delta) + t \log(1 - \delta) = f(\delta, t).$$

Now by Markov's inequality, we have for any t>0,

$$P(U_n(k) + n\log(1 - k/n) \ge \varepsilon n) = P(\exp(tU_n(k) + nt\log(1 - k/n)) \ge e^{\varepsilon nt})$$

$$\le e^{-\varepsilon nt} E[\exp(tU_n(k) + nt\log(1 - k/n))]$$

$$\le \exp(-\varepsilon nt + nf_n(t))$$

$$< (\exp(-\varepsilon t + f(\delta, t) + o(1)))^n,$$

and similarly

$$P(U_n(k) + n\log(1 - k/n) \le -\varepsilon n) = P(-U_n(k) - n\log(1 - k/n) \ge \varepsilon n)$$

$$\le \exp(-\varepsilon nt + nf_n(-t))$$

$$= (\exp(-\varepsilon t + f(\delta, -t) + o(1)))^n.$$

Since $f(\delta,t) = O(t^2)$ as $t \to 0$, the quantity $f(\delta,t) - \varepsilon |t|$ is strictly negative for all non-zero t sufficiently close to 0. Choosing a suitable t gives that there exists $\varrho = \rho(\varepsilon,\delta)$ in (0,1) such that for all large n,

$$P(|U_n(k) + n\log(1 - k/n)| \ge \varepsilon n) \le \varrho^n.$$

Before we show Theorem 1, we observe that by plotting f(y) = y and $f(y) = e^{m(y-1)}$, if y is the smallest root of $y = e^{m(y-1)}$, then for small $\varepsilon > 0$,

(2)
$$y - \varepsilon < e^{m(y - \varepsilon - 1)}$$
 or $m(1 - y + \varepsilon) + \log(y - \varepsilon) = \eta_1(\varepsilon) < 0$, and

(3)
$$y + \varepsilon > e^{m(y+\varepsilon-1)}$$
 or $m(1-y-\varepsilon) + \log(y+\varepsilon) = \eta_2(\varepsilon) > 0$.

We shall now show Theorem 1. If $k = [n - ny(m) + \varepsilon n] - 1$, then

$$P(N(m,n) \ge n - ny(m) + \varepsilon n) = P(N(m,n) > k)$$

which, from (1), is bounded above by

$$P(U_n(k) \le km) = P(U_n(k) + n\log(1 - k/n) \le km + n\log(1 - k/n)) \le P(U_n(k) + n\log(1 - k/n) \le mn(1 - y + \varepsilon) + n\log(y - \varepsilon) + O(1)).$$

Hence from (2) and Lemma 1, for large n,

(4)
$$P(N(m,n) \ge n - ny(m) + \varepsilon n) \le P(U_n(k) + n\log(1 - k/n) < -n\eta(\varepsilon) + O(1)) \le \rho^n,$$

We shall next show that for any $\varepsilon > 0$,

(5)
$$P(N(m,n) \le n - ny(m) - \varepsilon n) = O(n^{-m}) \quad \text{as} \quad n \to \infty.$$

Let l=[n/40]. Note that 1/40 < 1-y(m) for all $m \ge 2$. Then

 $P(N(m,n) \le l) \le P(\text{there is a set } W \text{ of vertices not including } v_1 \text{ such that } 0 \le |W| < l \text{ and every edge directed from } \{v_1\} \cup W \text{ leads to a vertex in } \{v_1\} \cup W)$

$$\leq \sum_{j=0}^{l-1} {n-1 \choose j} ((j+1)/n)^{(j+1)m} = \sum_{j=0}^{l-1} a_j$$
, say.

It is easy to check that for j=1 to l-2, $a_{j+1}/a_j \le (1/40)^{m-1}e^{m+1}$, which is less than 1 because $m \ge 2$. Hence as $n \to \infty$,

(6)
$$P(N(m,n) \le l) \le a_0 + na_1 = O(n^{-m}) + O(n^{2-2m}) = O(n^{-m}).$$

Let $k = \lfloor n - ny(m) - \varepsilon n \rfloor$. If $k \le l$, then (5) follows immediately from (6). Therefore assume k > l. Then using (1), as $n \to \infty$,

$$P(N(m,n) \le n - ny(m) - \varepsilon n)$$

$$= P(N(m,n) \le l) + \sum_{j=l+1}^{k} P(N(m,n) = j)$$

$$\le O(n^{-m}) + \sum_{j=l+1}^{k} P(U_n(j) > jm)$$

 $= O(n^{-m}) + \sum_{j=l+1}^{\kappa} P(U_n(j) + n\log(1 - j/n) > jm + n\log(1 - j/n)).$

Let $g(t) = mt + \log(1-t)$. Since g(t) is a concave function and since j satisfies $1/40 \le j/n \le 1 - y - \varepsilon$, we have from (3) that

$$g(j/n) \ge \eta(\varepsilon) = \min(g(1/40), g(1-y-\varepsilon)) > 0.$$

Hence by Lemma 1, for large n,

$$P(U_n(j) + n\log(1 - j/n) > jm + n\log(1 - j/n))$$

$$\leq P(U_n(j) + n\log(1 - j/n) > n\eta(\varepsilon)) \leq \varrho^n,$$

It therefore follows that

$$P(N(m,n) \ge n - y(m)n - \varepsilon n) \le O(n^{-m}) + n\varrho^n = O(n^{-m})$$
 as $n \to \infty$.
Our proof of Theorem 1 is therefore complete.

3. Proof of Theorem 2

With digraph D'(m,n) and variable $Z_{j,n}$ defined as in Section 2, let

$$W_j = \begin{cases} 1 & \text{if } Z_{j,n} > m \\ 0 & \text{otherwise.} \end{cases}$$

Now π_j is a leaf in DFS tree with root π_1 in D(m,n) if and only if $W_j = 1$ and π_j is in the DFS tree. Thus

(7)
$$N_L(m,n) = \sum_{j=1}^{N(m,n)} W_j.$$

We require the following lemma.

Lemma 2. Suppose that k is such that $k/n \to \alpha \in (0,1)$ as $n \to \infty$. Then for any $\varepsilon > 0$, there is ϱ in (0,1) such that for all large n,

$$P\left(\left|\sum_{j=1}^k W_j - n(k/n)^{m+1}/(m+1)\right| \ge \varepsilon n\right) \le \varrho^n.$$

Proof. Our proof here is similar to that of Lemma 1. Note that for sufficiently small t>0,

$$E[\exp(tW_j)] = e^t(j/n)^m + 1 - (j/n)^m \le 1 + (t+t^2)(j/n)^m$$

$$\le \exp((t+t^2)(j/n)^m),$$

and

$$E[\exp(-tW_j)] = e^{-t}(j/n)^m + 1 - (j/n)^m \le 1 - (t - t^2)(j/n)^m$$

$$\le \exp(-(t - t^2)(j/n)^m).$$

Thus for sufficiently small t>0,

$$E\left[\exp\left(t\sum_{j=1}^{k}W_{j}\right)\right] \leq \exp\left((t+t^{2})\sum_{j=1}^{k}(j/n)^{m}\right)$$

$$= \exp((t+t^{2})n(k/n)^{m+1}/(m+1) + o(n))$$

$$= \left\{\exp((t+t^{2})(k/n)^{m+1}/(m+1) + o(1))\right\}^{n},$$

and similarly for t > 0,

$$E\left[\exp\left(-t\sum_{j=1}^{k}W_{j}\right)\right] \leq \exp\left(-(t-t^{2})\sum_{j=1}^{k}(j/n)^{m}\right)$$
$$= \{\exp(-(t-t^{2})(k/n)^{m+1}/(m+1) + o(1))\}^{n}.$$

Therefore, for suitable t>0 and for large enough n,

$$P\left(\sum_{j=1}^{k} W_j - n(k/n)^{m+1}/(m+1) \ge \varepsilon n\right)$$

$$\le E\left[\exp\left(t\sum_{j=1}^{k} W_j\right)\right] \exp(-tn(k/n)^{m+1}/(m+1)) \exp(-\varepsilon nt)$$

$$= \left\{\exp(-\varepsilon t + t^2(k/n)^{m+1}/(m+1) + o(1))\right\}^n \le \varrho^n,$$

and

- P.

$$P\left(\sum_{j=1}^{k} W_j - n(k/n)^{m+1}/(m+1) \le -\varepsilon n\right)$$

$$\le E\left[\exp\left(-t\sum_{j=1}^{k} W_j\right)\right] \exp(tn(k/n)^{m+1}/(m+1)) \exp(-\varepsilon nt)$$

$$= \left\{\exp(-\varepsilon t + t^2(k/n)^{m+1}/(m+1) + o(1))\right\}^n \le \varrho^n.$$

Lemma 2 now follows.

Since, from Theorem 1, for any $\varepsilon > 0$,

$$P(|N(m,n) - (1-y)n| \ge \varepsilon n) = O(n^{-m})$$
 as $n \to \infty$,

Theorem 2 now follows very easily from Lemma 2 and (7).

4. Proof of Theorem 3

Assume $i/n \to \lambda$ in (0,1-1/m) as given in Theorem 3. Consider the sequence $\Pi = \{\pi_1, \pi_2, \dots, \pi_i\}$ of vertices picked by DFS. Recall from Section 1 that we colour the vertices in Π so that π_j is black if and only if π_j is a vertex past which DFS has backtracked. The sequence Π is now separated into runs of black vertices. If $\pi_j, \pi_{j+1}, \dots, \pi_k$ is a run of black vertices (with π_{j-1} and π_{k+1} non-black), we say that π_j (resp. π_k) is the left end (resp. right end) of the run of black vertices. Note that L'(i, m, n) = i-number of black vertices. For s < t, let $\Pi(s, t)$ denote the subsequence $\{\pi_s, \dots, \pi_t\}$ of Π and let B(s, t) be the number of black vertices in $\Pi(s, t)$. We shall obtain the following estimates of B(s, t), proof of which will be given later, and use these estimates to show Theorem 3.

Lemma 3. Suppose that $\alpha n \leq s < t \leq \beta n$ and $(t-s)/n \to c$ as $n \to \infty$. Then for any $\varepsilon_1 > 0$, there is $\varrho_1 \in (0,1)$ such that for all large n,

$$P(cnx(\alpha, m) - \varepsilon_1 n \le B(s, t) \le cnx(\beta, m) + \varepsilon_1 n) > 1 - \varrho_1^n$$

Proof of Theorem 3. Note that Lemma 3 suggests that $B(\lfloor \beta n \rfloor, \lfloor (\beta + \Delta \beta) n \rfloor)/\Delta \beta \approx x(\beta,m)n$ when $\Delta \beta$ is small. Thus, intuitively, L'(i,m,n) is about $n\int\limits_0^\lambda (1-x(\beta,m))d\beta$. We shall make this idea rigorous as follows. Let ξ be a large positive integer to be defined later. For $l=1,2,\ldots,\xi$, let

$$egin{aligned} & lpha_l = \lambda l/\xi & & \text{with} \quad lpha_0 = 0, \\ & t_l = \lfloor lpha_l n
floor & & \text{with} \quad t_0 = 0, \\ & \Pi_l = \{t_{l-1} + 1, \dots, t_l\}, \\ & B_l = \text{number of black vertices in} \quad \Pi_l. \end{aligned}$$

Note that if B is the number of black vertices in Π , then

$$B_2 + \ldots + B_{\xi} \le B \le B_1 + B_2 + \ldots + B_{\xi} + o(n).$$

From Lemma 3, we have that for any $\varepsilon_1 > 0$, there is a $\varrho(l)$ in (0,1) so that for large n,

$$P\left(\frac{\lambda}{\xi}nx(\alpha_{l-1},m)-\varepsilon_1n\leq B_l\leq \frac{\lambda}{\xi}nx(\alpha_l,m)+\varepsilon_1,n\right)>1-\varrho(l)^n.$$

Hence for any $\varepsilon_1 > 0$, we may choose ϱ in (0,1) and ϱ depends on ξ such that for large n,

$$P\left(\text{for} \quad l=1,\ldots,\xi, \ \frac{\lambda}{\xi}nx(\alpha_{l-1},m) - \varepsilon_1 n \leq B_l \leq \frac{\lambda}{\xi}nx(\alpha_l,m) + \varepsilon_1 n\right) > 1 - \varrho^n,$$

which implies that

$$P\left(\sum_{l=1}^{\xi-1} \frac{\lambda}{\xi} nx(\alpha_l, m) - \varepsilon_1 n\xi \le \sum_{l=1}^{\xi} B_l \le \sum_{l=1}^{\xi} \frac{\lambda}{\xi} nx(\alpha_l, m) + \varepsilon_1 n\xi\right) > 1 - \varrho^n.$$

For any ε_2 and ε_3 , since $x(\alpha, m)$ is increasing with α (for $\alpha < 1 - 1/m$), we can choose ξ large enough so that

$$\sum_{l=1}^{\xi-1} \frac{\lambda}{\xi} x(\alpha_l, m) + \varepsilon_2 \geq \int\limits_0^\lambda x(\beta, m) d\beta \geq \sum_{l=1}^{\xi} \frac{\lambda}{\xi} x(\alpha_l, m) - \varepsilon_3.$$

Hence we have for any ε_1 and for any $\varepsilon_2, \varepsilon_3 > 0$, we can choose ξ large enough so that there is ϱ in (0,1),

$$P\left(n\int_{0}^{\lambda}x(\beta,m)d\beta-(\varepsilon_{1}\xi+\varepsilon_{2})n\leq B\leq n\int_{0}^{\lambda}x(\beta,m)d\beta+(\varepsilon_{1}\xi+\varepsilon_{3})n\right)>1-\varrho^{n}$$

for all large n. Since $i = \lambda n + o(n)$, Theorem 3 now follows from the above (since ε_1 , ε_2 , ε_3 are all arbitrary).

It therefore remains to show Lemma 3. Let us first make the following observation. For edge e in $\{(j, v): j = 1, 2, ..., m, v = \pi_1, \pi_2, ..., \pi_i\}$, let

$$X_e = \left\{ egin{array}{ll} 1 & \mbox{if e has been succesfully inspected} \\ 0 & \mbox{otherwise}. \end{array}
ight.$$

Note that conditional on the event that edge e is examined when picking vertex π_j , we have $P(X_e=0)=(j-1)/n$. Let L_j be the set $\{(l,\pi_j):l=1,2,\ldots,m\}$. Define

$$Y_j = \sum_{e \in L_i} X_e.$$

Suppose that π_{k+1} is uncoloured. Then π_k is coloured if and only if $Y_k = 0$. Also, if π_k is the right end of a run of black vertices in Π (that is, $Y_k = 0$ and π_{k+1} is uncoloured), then the event that the vertices $\pi_{j+1}, \pi_{j+2}, \dots, \pi_{k-1}$ are black corresponds to the event E that

(8)
$$Y_{k-1} \le 1, Y_{k-1} + Y_{k-2} \le 2, \dots, Y_{k-1} + \dots, +Y_{j+1} \le k - j - 1.$$

We have (8) because if π_k is the right end of a run of black vertices, then the vertices $\pi_{j+1}, \pi_{j+2}, \ldots, \pi_{k-1}$ are black if and only if for each l from j+1 to k-1, every edge directed from $\pi_l, \pi_{l+1}, \ldots, \pi_{k-1}$ has been examined and at most (k-1-l)+1=k-l of these edge inspections are successful. Suppose now that $k \leq \beta n$ and $j \geq \alpha n$. Then since $\alpha \leq P(X_e = 0) \leq \beta$, for all edge e directed from $\pi_{j+1}, \ldots, \pi_{k-1}$, and since each edge in D'(m,n) is directed independently of others, we have for $j=1,2,\ldots,m$, and for $j \leq l \leq k$ that $P_{\alpha}(Y_l \leq j) \leq P(Y_l \leq j) \leq P_{\beta}(Y_l \leq j)$. Hence

(9)
$$P_{\alpha}(E) \le P(E) \le P_{\beta}(E),$$

where P_{ζ} is the probability law corresponding to the probability space in which $P_{\zeta}(X_e=0)=\zeta$ and the random variables X_e 's are independent.

To find an upper bound for B(s,t) in Lemma 3, we perform the following experiment. Suppose that $l \leq t$ is the largest integer such that π_l is non-black. If there is no such l, let l = s - 1. That is, $\pi_{l+1}, \pi_{l+2}, \ldots, \pi_t$ are black while π_l is not. We use green to colour the vertices in $\Pi(s,t)$ according to the following rules:

- (i) if l < t, colour the vertices π_{l+1}, \ldots, π_t and do not colour π_l ,
- (ii) start colouring from π_{l-1} to π_s as follows:
 - (a) if π_{k+1} is uncoloured, colour π_k if $Y_k = 0$, otherwise do not colour π_k , where $Y_k = \sum_{e \in L_k} X_e$ and X_e 's are sampled with the probability law P_β ,
 - (b) if π_k is coloured but π_{k+1} is not, then we colour the vertices $\pi_{j+1}, \pi_{j+2}, \dots, \pi_{k-1}$ but do not colour π_j if

(10)
$$Y_{k-1} \le 1$$
, $Y_{k-1} + Y_{k-2} \le 2$, ..., $Y_{k-1} + \dots + Y_{j+1} \le k - j - 1$
and $Y_{k-1} + \dots + Y_j \ge k - j + 1$,

(iii) the colouring process is stopped once π_s is reached.

Let G(s,t) be the number of green vertices in $\Pi(s,t)$. Since by (9), the length of a run of green vertices in $\Pi(s,t)$ is greater in distribution than that of black vertices, G(s,t) is greater than B(s,t) in distribution, that is, for any $l \ge 0$,

(11)
$$P_{\beta}(G(s,t) \ge l) \le P(B(s,t) \ge l).$$

Similarly for a lower bound of B(s,t), we can repeat the experiment using the red colour and probability law P_{α} instead of P_{β} . Let R(s,t) be the number of red vertices in $\Pi(s,t)$. Then we have for any $l \geq 0$,

(12)
$$P_{\alpha}(R(s,t) \le l) \le P(B(s,t) \le l).$$

We require the following result which together with (11) and (12), gives Lemma 3 immediately.

Lemma 4. Suppose that $\alpha n \le s < t \le \beta n$ and $(t-s)/n \to c$ as $n \to \infty$. Then for any $\varepsilon_1 > 0$, there is $\varrho \in (0,1)$ such that for all large n,

(13)
$$P_{\beta}(G(s,t) \ge cnx(\beta,m) + \varepsilon_1 n) \le \varrho^n,$$

(14)
$$P_{\alpha}(R(s,t) \le cnx(\alpha,m) - \varepsilon_1 n) \le \varrho^n.$$

In order to show Lemma 4 and (13) in particular, we consider the following. Let $Z_{1,g}$ denote the length of the run of uncoloured vertices with π_k as its right end. Then for j=1,2,...

$$P_{\beta}(Z_{1,g} = j) = P_{\beta}(\pi_{k-j} \text{ is green and } \pi_{k-j+1}, \dots, \pi_{k-1} \text{ are uncoloured})$$

= $P_{\beta}(Y_{k-j} = 0, Y_{k-j+1} \ge 1, \dots, Y_{k-1} \ge 1)$
= $(1 - \beta^m)^{j-1} \beta^m$.

Suppose that π_{k-j+1} is uncoloured but π_{k-j} is green, that is, π_{k-j} is the right end of a run of green vertices. Let $Z_{2,g}$ denote the length of this run of green vertices. From (10) we have that for $l \ge 1$, $P_{\beta}(Z_{2,g} = l)$ is equal to the probability that

$$Y_1' \leq 1, \quad Y_1' + Y_2' \leq 2, \ldots, \quad Y_1' + \ldots + Y_{l-1}' \leq l-1 \quad \text{and} \quad Y_1' + \ldots + Y_l' \geq l+1,$$

where Y_1', Y_2', \ldots, Y_l' are independent and each is the sum of m independent Bernoulli variables X_e and $P_{\beta}(X_e=0)=\beta$. Define $Z_{3,g}=Z_{1,g}+Z_{2,g}$. Then given that π_k is uncoloured, $\{Z_{3,g}=\nu\}$ corresponds to the event that the subsequence $\pi_{k-\nu+1}, \ldots, \pi_{k-1}$ of $\Pi(s,t)$ contains exactly one run of green vertices with $\pi_{k-\nu+1}$ being the left end of the run of green vertices. (Note that $\pi_{k-\nu}$ is uncoloured.) Similarly, we have $Z_{1,r}, Z_{2,r}$ and $Z_{3,r}$ for red vertices. For k=1,2,3, define $\mu_{k,r}=E_{\alpha}[Z_{k,r}]$ and $\mu_{k,g}=E_{\beta}[Z_{k,g}]$, where E_{ζ} is the expectation operator in the probability space with law P_{ζ} . We shall use the following result, to be proved later, to obtain estimates for R(s,t) and G(s,t).

Lemma 5. There exist positive constants σ_1 and σ_2 such that

$$E_{\beta}[\exp(\theta Z_{1,g})] = e^{\theta} \beta^m / [1 - e^{\theta} (1 - \beta^m)] \qquad \text{for} \quad \theta < \sigma_1$$

$$E_{\beta}[\exp(\theta Z_{2,g})] = 1 + \beta^{-m} \frac{x_1(e^{\theta})(e^{\theta} - 1)}{e^{\theta} (1 - x_1(e^{\theta}))} \qquad \text{for} \quad \theta < \sigma_2,$$

where $x_1(y)$ is the smallest positive root of $(x+\beta-x\beta)^m = x/y$. Also,

$$\mu_{1,g} = \beta^{-m},$$
 $\mu_{2,g} = \beta^{-m} x(\beta, m) / (1 - x(\beta, m)),$ $\mu_{3,g} = \beta^{-m} / (1 - x(\beta, m)).$

If we replace β with α in the above, we obtain corresponding estimates for red vertices.

Corollary 6. For any $\varepsilon > 0$, there is $\varrho \in (0,1)$ such that for all large n,

P(there is a run of black vertices in Π with length at least $\varepsilon n \leq \varrho^n$.

Proof of Corollary 6. Let β be such that $\lambda < \beta < 1-1/m$. Then by choosing suitable $\theta > 0$, there is ϱ_1 in (0,1) so that

(15)
$$P_{\beta}(Z_{2,g} \ge \varepsilon n) \le E_{\beta}[\exp(\theta Z_{2,g})] \exp(-\varepsilon n\theta) \le \varrho_1^n$$

for all large n. Since $\beta > i/n$ for large n, it follows from (9) that,

P(there is a run of black vertices in Π with length at least εn)

 $\leq P_{\beta}$ (there is a run of green vertices in Π with length at least εn)

 $=\sum_{i\geq k\geq \varepsilon n}P_{\beta} \text{(there is a run of green vertices in Π with length at least εn)}$

and with π_k as its right end)

$$\leq \sum_{i \geq k \geq \varepsilon n} P_{\beta}(Z_{2,g} \geq \varepsilon n)$$

which, from (15), is bounded above by $n\varrho_1^n \leq \varrho^n$.

Proof of Lemma 4. We shall show (13). Let τ be the number of runs of green vertices in $\Pi(s,t)$ excluding the runs (if any) containing π_s or π_t . Then

$$P_{\beta}(\tau \ge \nu) \le P_{\beta} \left(\sum_{k=1}^{\nu} Z_{3,g}^{(k)} \le t - s \right)$$

where the variables $Z_{3,g}^{(k)}$ are independent with the same distribution as $Z_{3,g}$ defined before Lemma 5. For $\varepsilon > 0$, let $\nu = \lfloor \varepsilon n + cn/\mu_{3,g} \rfloor$ so that as $n \to \infty, \nu\mu_{3,g} \ge t - s + \eta(\varepsilon)\nu + o(n)$ where $\eta(\varepsilon) > 0$. Hence

(16)
$$P_{\beta}(\tau \geq \nu) \leq P_{\beta} \left(\sum_{k=1}^{\nu} Z_{3,g}^{(k)} \leq \nu \mu_{3,g} - \eta(\varepsilon)\nu + o(n) \right).$$

Since from Lemma 5, $E_{\beta}[\exp(\theta Z_{3,g})]$ is defined for θ in an open interval containing the origin, we have as $\theta \to 0$,

$$E_{\beta}[\exp(-\theta Z_{3,q})] = 1 - \theta \mu_{3,q} + O(\theta^2) \le \exp(-\theta \mu_{3,q} + O(\theta^2))$$

and so from (16) for positive θ sufficiently close to 0,

(17)
$$P_{\beta}(\tau \geq \nu) \leq \{E_{\beta}[\exp(-\theta Z_{3,g})] \exp(\theta \mu_{3,g} - \theta \eta(\varepsilon) + o(1))\}^{\nu}$$
$$\leq \{\exp(-\eta(\varepsilon)\theta + O(\theta^{2}) + o(1))\}^{\nu} \leq \varrho_{1}^{\nu} \leq \varrho_{2}^{\nu}$$

where ϱ_2 is in (0,1) and n is large. Suppose that $0 < 2\varepsilon_2 < \varepsilon_1$ where ε_1 is given in Lemma 4. Now from Corollary 6, there is $\varrho_3 \in (0,1)$ so that

$$G(s,t) \le \sum_{k=1}^{\tau} Z_{2,g} + 2\varepsilon_2 n$$

with probability at least $1 - \varrho_3^n$ for large n. If $\nu = \lfloor \varepsilon_3 n + cn/\mu_{3,g} \rfloor$ where ε_3 is such that $\eta = \varepsilon_1 - 2\varepsilon_2 - \varepsilon_3 \mu_{2,g} > 0$, then since $\mu_{2,g}/\mu_{3,g} = x(\beta,m)$,

$$\nu\mu_{2,q} = \varepsilon_3\mu_{2,q}n + cnx(\beta, m) + O(1).$$

Using (17) in which we put $\varepsilon = \varepsilon_3$, we have for all large n,

$$\begin{split} P_{\beta}(G(s,t) &\geq cnx(\beta,m) + \varepsilon_{1}n) \\ &\leq P_{\beta} \left(\sum_{k=1}^{\tau} Z_{2,g} \geq cnx(\beta,m) + \varepsilon_{1}n - 2\varepsilon_{2}n \right) + \varrho_{3}^{n} \\ &\leq P_{\beta} \left(\sum_{k=1}^{\nu} Z_{2,g} \geq cnx(\beta,m) + \varepsilon_{1}n - 2\varepsilon_{2}n \right) + \varrho_{2}^{n} + \varrho_{3}^{n} \\ &\leq P_{\beta} \left(\sum_{k=1}^{\nu} Z_{2,g} \geq \nu\mu_{2,g} + \eta n + O(1) \right) + \varrho_{2}^{n} + \varrho_{3}^{n}. \end{split}$$

Using methods similar to those used in showing (17) from (16), we have

$$P_{\beta}\left(\sum_{k=1}^{\nu} Z_{2,g} \ge \nu \mu_{2,g} + \eta n + O(1)\right) \le \varrho_4^n, \quad \text{where} \quad \varrho_4 \in (0,1).$$

We now have (13) because

$$P_{\beta}(G(s,t) \geq cnx(\beta,m) + \varepsilon_1 n) \leq \varrho_2^n + \varrho_3^n + \varrho_4^n \leq \varrho_5^n, \quad \text{for large} \quad n.$$

Our proof of inequality (14) is omitted as it is very similar to that of (13).

Proof of Lemma 5. Note that for $\theta < -\log(1-\beta^m) = \sigma_1 > 0$,

$$E_{\beta}[\exp(\theta Z_{1,g})] = \prod_{j=1}^{\infty} (1 - \beta^m)^{j-1} \beta^m e^{j\theta} = e^{\theta} \beta^m / [1 - e^{\theta} (1 - \beta^m)].$$

Finding $E_{\beta}[\exp(\theta Z_{2,g})]$ is not as easy. For $l=1,2,\ldots$ and $k=0,1,2,\ldots$, let $P_{l,k}$ stand for the probability that

$$Y_1' \le k$$
, $Y_1' + Y_2' \le k + 1, \dots$, $Y_1' + \dots + Y_{l-1}' \le k + l - 2$ and $Y_1' + \dots + Y_l' \ge k + l$.

We shall use generating functions to find

$$G(e^{\theta}) = E_{\beta}[\exp(\theta Z_{2,g})] = \sum_{l=1}^{\infty} e^{\theta l} P_{l,1}.$$

Note that we shall adopt the convention that $\binom{l}{i} = 0$ for l < j. Now

$$P_{1,k} = P_{\beta}(Y_1 \ge k+1) = \sum_{j=k+1}^{m} {m \choose j} (1-\beta)^j \beta^{m-j},$$

$$P_{l,k} = \sum_{j=0}^{k} P_{\beta}(Y_1' = j) P_{l-1,k+1-j} = \sum_{j=0}^{k} {m \choose j} (1-\beta)^j \beta^{m-j} P_{l-1,k+1-j}, \quad \text{for } l \ge 2.$$

Hence

$$\sum_{l=2}^{\infty} \sum_{k=0}^{\infty} P_{l,k} y^{l} x^{k} = \sum_{l=2}^{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{k} {m \choose j} (1-\beta)^{j} \beta^{m-j} P_{l-1,k+1-j} y^{l} x^{k}$$

$$= \sum_{l=2}^{\infty} \sum_{j=0}^{\infty} \sum_{k=j}^{\infty} {m \choose j} (1-\beta)^{j} \beta^{m-j} P_{l-1,k+1-j} y^{l} x^{k}$$

$$= \sum_{l=2}^{\infty} \sum_{j=0}^{m} \sum_{k=0}^{\infty} {m \choose j} (1-\beta)^{j} \beta^{m-j} P_{l-1,k+1} y^{l} x^{k+j}$$

$$= \frac{y}{x} (\beta + x - x\beta)^{m} \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} P_{l,k} y^{l} x^{k}.$$

Let
$$F(x,y) = \sum_{l=1}^{\infty} \sum_{k=0}^{\infty} P_{l,k} y^l x^k$$
, and $H(x) = \sum_{k=0}^{\infty} P_{1,k} x^k$. Then

(18)
$$F(x,y) - yH(x) = \frac{y}{x}(\beta + x - x\beta)^m \left(F(x,y) - \sum_{l=1}^{\infty} P_{l,0}y^l \right), \text{ and}$$
(19)
$$H(x) = [1 - (\beta + x - x\beta)^m]/(1 - x).$$

Since $P_{l,k} \in [0,1]$, F(x,y) converges for |x| and |y| in (0,1). Now if x = x(y) is a root of the equation

$$(20) (\beta + x - x\beta)^m = x/y,$$

then from (18) and (19),

$$\sum_{l=1}^{\infty} P_{l,0} y^l = y H(x) = (y - x(y))/(1 - x(y)).$$

Let $x_1(y)$ be the smallest positive root of equation (20). Note that

$$x_1(y) = \sum_{k=1}^{\infty} \frac{1}{k} {mk \choose k-1} y^k (1-\beta)^{k-1} \beta^{mk-k+1}.$$

and that x_1 is the only root of (20) such that $x_1(y) \to 0$ as $y \to 0$, giving

$$\lim_{y \to 0} \sum_{l=1}^{\infty} P_{l,0} y^l = \lim_{y \to 0} (y - x_1(y)) / (1 - x_1(y)) = 0.$$

Therefore, we have

$$\sum_{l=1}^{\infty} P_{l,0} y^l = (y - x_1(y))/(1 - x_1(y)).$$

Since $P_{l,0} = \beta^m P_{l-1,1}$ for $l \ge 2$ and since $P_{1,0} = P_{\beta}(Y_1 \ge 1) = 1 - \beta^m$.

$$G(y) = \sum_{l=1}^{\infty} P_{l,1} y^l = \frac{\beta^{-m}}{y} \sum_{l=1}^{\infty} P_{l,0} y^l - \beta^{-m} P_{1,0} = 1 + \beta^{-m} \frac{x_1(y)(y-1)}{y(1-x_1(y))}.$$

Since $x_1(1) \neq 1$, we have $\lim_{y \to 1} x_1(y)(y-1)/[y(1-x_1(y))] = 0$, and so G(1) = 1, implying that the variable $Z_{2,g}$ is non-defective. Also, $x_1(y)$ is defined for $y < \zeta_0$ where ζ_0 is the unique number such that the line $z = x/\zeta_0$ is tangent to the curve $z = (x + \beta - x\beta)^m$. We find that

$$\zeta_0 = \frac{[(m-1)/(m\beta)]^{m-1}}{(1-\beta)m} > 1.$$

Hence $E_{\beta}[\exp(\theta Z_{2,g})] = G(e^{\theta})$ is defined for $\theta < \sigma_2$ where $\sigma_2 = \log \zeta_0 > 0$. Note that $\mu_{1,g} = \beta^{-m}$ is obvious and $\mu_{2,g} = G'(1)$. Now

$$G(y) = 1 + \beta^{-m} \left(\frac{1-y}{y} - (1-y)/(y - yx_1(y)) \right)$$

and so $\frac{d}{dy}G(y) = \beta^{-m}(-y^{-2} + 1/(y - yx_1(y)) - (1 - y)\frac{d}{dy}(y - yx_1(y))^{-1}$, giving that $G'(1) = \beta^{-m} + \beta^{-m}/(1 - x_1(1))$. Since $x_1(1) = x(\beta, m)$, we have

$$\mu_{2,g} = \beta^{-m} x(\beta, m) / (1 - x(\beta, m)), \quad \mu_{3,g} = \mu_{1,g} + \mu_{2,g} = \beta^{-m} / (1 - x(\beta, m)).$$

The other half of the lemma is proved similarly.

5. Proof of Theorem 4

We shall use the model d'(m,n) defined in Section 2 to show Theorem 4. Note that for vertex π_i in the DFS tree with root π_1 in D(m,n), L'(i,m,n) in D(m,n) is equal to L'(i,m,n) in D'(m,n). Consider the situation after π_i has just been picked. Let j'' be the largest integer less than (1-1/m)n so that $\pi_{j''}$ is non-black. Let i'' be the smallest integer not less than (1-1/m)n so that $\pi_{i''}$ is non-black. Then since the vertices $\pi_{j''+1}, \ldots, \pi_{i''-1}$ are all black, we have that

(21)
$$L'(i, m, n) \le L'(j'', m, n) + (i - i'' + 1)$$

(22)
$$L'(i, m, n) \ge L'(j'', m, n).$$

Let $\gamma = \gamma(\zeta)$ be the l;argest root of $z = \exp(\zeta(z-1))$. Let i be as given in the hypothesis of the theorem, that is, $i/n \to \lambda$ in (1-1/m, 1-y(m)). Let j' be the unique integer such that

$$1 - (j'+1)/n < (1 - i/n)\gamma(m(1 - i/n)) \le 1 - j'/n.$$

The following lemma contains some observations on j' which will be useful later.

Lemma 7. Suppose that ε_1 , ε_2 and ε_3 are positive constants.

(i) If $l = \lceil j' - \varepsilon n \rceil$, then for all large n,

(23)
$$m(j'-l)/n + \log((1-j'/n)/(1-l/n)) \ge \eta = \eta(\varepsilon) > 0.$$

(ii) If j satisfies $j' + \varepsilon_1 n \le j \le i - \varepsilon_2 n$, then for all large n,

(24)
$$m(i-j)/n + \log((1-i/n)/(1-j/n)) \le -\zeta = -\zeta(\varepsilon_1, \varepsilon_2) < 0.$$

(iii) if k satisfies $j'+1 \le 1$, then

(25)
$$m(k-j')/n + \log((1-k/n)/(1-j'/n)) \ge 0.$$

Proof of Lemma 7. Suppose that γ is the largest root of $z = e^{\xi(z-1)}$. Then by plotting the functions f(z) = z and $f(z) = e^{\xi(z-1)}$, we see that for $\zeta < 1$, the gradient of $f(z) = e^{\zeta(z-1)}$ is bigger than 1 when $z = \gamma$, and so

(26)
$$z > e^{\xi(z-1)} \quad \text{for} \quad z \in (1, \gamma),$$

(27)
$$z < e^{\xi(z-1)} \quad \text{for} \quad z \in (\gamma, \infty),$$

(28)
$$\gamma \xi = \frac{d}{dz} e^{\xi(z-1)} \Big|_{z=\gamma} > 1.$$

Also, if $\psi = \zeta \gamma$, then $\log \psi - \log \xi = \psi - \xi$, giving that

$$\frac{d\psi}{d\xi} = \frac{\psi(\xi - 1)}{\xi(\psi - 1)} < 0$$

and that ψ is a decreasing function in ξ . To show (23), note that

$$m(j'-l)/n + \log((1-j'/n)/(1-l/n))$$

$$= m(j'/n - l/n) - \log(1 + (j'/n - l/n)/(1-j'/n))$$

$$\geq m(j'/n - l/n) - (j'/n - l/n)/(1-j'/n)$$

$$= (j'/n - l/n)[m - 1/(1-j'/n)].$$

Since $m(1-i/n) = m(1-\lambda) + o(1)$ and $m(1-\lambda) < 1$,

$$1 - j'/n \ge (1 - i/n)\gamma(i/n) + o(1) = (1 - \lambda)\gamma(m(1 - \lambda)) + o(1).$$

Taking $\xi = m(1-\lambda)$, it follows from (28) that 1-j'/n > 1/m, and (23) now follows. To show (24), note that $(1-j/n)/(1-i/n) \in (1+c_2, \gamma(m(1-\lambda))-c_1)$ where c_1 and c_2 are positive and c_1 depends on ε_1 and c_2 depends on ε_2 . Hence from (26), taking $\xi = m(1-\lambda)$, there is $c_3 > 1$ so that

$$(1 - j/n)/(1 - i/n) > c_3 e^{m(1-\lambda)[1-j/n)/(1-i/n)-1]}$$
$$= c_3 e^{m(i/n-j/n)} + o(1).$$

Inequality (24) now follows. To show (25), let $\xi = m(1-i/n)$ and $\xi_2 = (1-k/n)$ and γ_1 and γ_2 be the largest roots of $\gamma = e^{\xi(\gamma-1)}$ where $\xi = \xi_1$ and ξ_2 respectively. As $\xi_1 < \xi_2$, (29) now gives

$$(1-j'/n)/(1-k/n) \ge \gamma_1 \varepsilon_1/\varepsilon_2 > \gamma_2.$$

By virtue of (27), taking $\xi = \xi_2$,

$$(1-j'/n)/(1-k/n) \le \exp\{\xi_2[(1-j'/n)/(1-k/n)01]\} = e^{m(k/n-j'/n)}$$

Inequality (25) now follows.

The following lemma contains some useful estimates of j'' and i''. We shall use these estimates and (21), (22) to prove Theorem 4 first; proof of the lemma will be given later.

Lemma 8. For any $\varepsilon > 0$, there is ϱ in (0,1) such that for all large n,

(30)
$$P(|j'-j''| \le \varepsilon n) \ge 1 - \varrho^n$$

(31)
$$P(|i - i''| \le \varepsilon n) \ge 1 - \varrho^n.$$

Proof of Theorem 4. From (21), we have for any $\varepsilon > 0$,

$$\begin{split} &P(L'(i,m,n) \geq b(j'/n,m)n + \varepsilon n) \\ &\leq P(L'(j'',m,n) + (i-i''+1) \geq b(j'/n,m)n + \varepsilon n)) \\ &\leq P(L'(j'',m,n) \geq b(j''/n,m)n + (b(j'/n,m) - b(j''/n,m)n + \varepsilon n - (i-i''+1)) \\ &\leq P(L'(j'',m,n) \geq b(j''/n,m)n + \varepsilon_1 n) \\ &+ P(b(j'/n,m) - b(j''/n,m) \leq -\varepsilon_2) + P(i-i''+1 \geq \varepsilon_3 n), \end{split}$$

where ε_1 , ε_2 , ε_3 are positive and satisfy $\varepsilon_1 = \varepsilon_2 - \varepsilon_3$. Now since from Lemma 8, j''/n converges in probability to the constant $\lim_{n\to\infty} j'/n$ which is less than 1-1/m, we have from Theorem 3 that for large n,

$$P(L'(j'', m, n) \ge b(j''/n, m)n + \varepsilon_1 n) \le \varrho_1^n$$

Since for any $\varepsilon_2 > 0$, $|b(j''/n, m) - b(j'/n, m)| \le \varepsilon_2$ implies that there is $\varepsilon_4 > 0$ such that $|j' - j'' \le \varepsilon_4 n$. Hence from (30),

$$P(b(j'/n, m) - b(j''/n, m) \le -\varepsilon_2) \le \varrho_2^n$$
.

Thus, together with (31), there is ϱ in (0,1) such that

(32)
$$P(L'(i, m, n) \ge b(j'/n, m)n + \varepsilon n) \le \varrho^n.$$

From (22), for any $\varepsilon > 0$,

$$\begin{split} &P(L'(i,m,n) \leq b(j'/n,m)n - \varepsilon n) \\ &\leq P(L'(j'',m,n) \leq b(j'/n,m)n - \varepsilon n) \\ &= P(L'(j'',m,n) \leq b(j''/n,m)n + (b(j'/n,m) - b(j''/n,m))n - \varepsilon n) \\ &\leq P(L'(j'',m,n) \leq b(j''/n,m)n - \varepsilon_1 n) + P((b(j'/n,m) - b(j''/n,m))n - \geq \varepsilon_2 n) \end{split}$$

where ε_1 and ε_2 are positive and $\varepsilon_1 = \varepsilon - \varepsilon_2$. But as in showing (32), each term above is less than $\varrho_{\overline{3}}^n$ for large n. Hence, there is ϱ in (0,1) so that

(33)
$$P(L'(i, m, n) \le b(j'.m)n - \varepsilon n) \le \varrho^n.$$

Theorem 4 now follows from (32) and (33) because $j'/n \to 1(1-\lambda)\gamma$ where $\gamma = \gamma(m(1-\lambda))$ is the largest root of $\gamma = \exp((1-\lambda)(\gamma-1))$ and b(j',m) tends to $b(1-(1-\lambda)\gamma,m)$ as $n\to\infty$.

It therefore remains to show Lemma 8. For k>j, let $U_{n,j}(k)$ be the number of edge inspections required by DFS to get to π_k from π_j . That is, $U_{n,j}(k)=U_n(k)-U_n(j)$ where $U_n(l)$ is defined in Section 2. Our proof of Lemma 8 requires the next lemma which follows immediately from Lemma 1.

Lemma 9. Suppose that k > j and that k/n and j/n converge to constants which are less than δ and $\delta \in (0,1)$. Then there is ϱ in (0,1) such that for all large n,

$$P(|U_{n,j}(k) + n\log(1 - k/n) - n\log(1 - j/n)| \ge \varepsilon n) \le \varrho^n.$$

Proof of Lemma 8. Let $l = [j' - \varepsilon n]$. Consider picking vertices after $pi_{j'}$ has been picked. We know that there are $m(j'-l) - U_{n,l}(j')$ (if it si not negative) unused edges directed from $\pi_l, \ldots, \pi_{j'}$. Thus $j'' \ge l$ if and only if not all of these edges have been inspected while picking $\pi_{j'+1}, \ldots, \pi_i$. Hence

$$\begin{split} P(j''>j'-\varepsilon n) &= P(m(j'-l)-U_{n,l}(j') \geq 0 \quad \text{and for} \quad k=j'+1 \quad \text{to} \quad i, \\ U_{n,j'}(k) &\leq m(k-j')+m(j'-l)-U_{n,l}(j')) \\ &\geq 1-\sum_{k=j'+1}^{i} P(U_{n,j'}(k)>m(k-j')+m(j'-l)-U_{n,l}(j')) \\ &-P(m(j'-l)-U_{n,l}(j')<0). \end{split}$$

From (23) there is η such that for large n,

$$m(j'-l)/n + \log((1-j'/n)/(1-l/n)) \ge \eta(\varepsilon) > 0.$$

Also for any ε_1 in $(0, \eta(\varepsilon))$, we have from Lemma 9 that for large n,

$$P(U_{n,l}(j') + n \log((1 - j'/n)/(1 - l/n)) \ge \varepsilon_1 n) \le \varrho_1^n$$

Hence, with (25), Lemma 9 and the above,

(34)
$$P(j'' > j' - \varepsilon n) \ge 1 - \varrho_1^n - \sum_{k=j'+1}^i P(U_{n,j'}(k) > m(k-j') + n(\eta(\varepsilon) - \varepsilon_1))$$

$$\ge 1 - \varrho_1^n - \sum_{k=j'+1}^i P(U_{n,j'}(k) + n\log((1-k/n)/(1-j'/n)) > n(\eta(\varepsilon) - \varepsilon_1))$$

$$\ge 1 - \varrho_1^n - n\varrho_2^n \ge 1 - \varrho^n,$$

for large n. Also

$$\begin{split} P(j'' \geq j' + \varepsilon n & \text{ or } i'' \leq i - \varepsilon n) \\ & \leq P(\text{there is } j \text{ so that } j' + \varepsilon n \leq j < i - \varepsilon n \text{ and } U_{n,j}(i) \leq m(i-j)) \\ & \leq \sum_{j=l}^{h} P(U_{n,j}(i) \leq m(i-j)) \end{split}$$

where $h = \lceil 1 - \varepsilon n \rceil$ and $l = \lfloor j' + \varepsilon n \rfloor$. From Lemma 9 and (24), there is $\eta > 0$ so that for $l \le j \le h$ and for large n,

$$P(U_{n,j}(i) \le m(i-j)) = P(U_{n,j}(i) + n\log((1-i/n)/(1-j/n) \le -\eta n) \le \varrho_3^n,$$
 which implies that

$$P(j'' \ge j' + \varepsilon n \text{ or } i'' \le i - \varepsilon n) \le n\varrho_3^n \le \varrho^n.$$

Inequalities (30) and (31) follow from (34) and the above.

Acknowledgement. I would like to thank the referees for their helpful comments and suggestions. I would like to thank them for pointing out the various typographical errors in the original manuscript.

References

- AJTAI, M., KOMLÓS, J., and SZEMERÉDI, E.: The longest path in a random graph, Combinatorica 1 (1981), 1–12.
- [2] Bollobás, B. Random Graphs, Academic Press, (1985).
- [3] FENNER, T. I., and FRIEZE; A. M. On large matchings and cycles in sparse random graphs, Discrete Mathematics 59 (1986), 243–256.
- [4] FERNANDEZ DE LA VEGA, W. Long paths in random graphs, Studia Sci. Math. Hung. 14 (1979), 335-340.
- [5] GIBBONS, A. Algorithmic Graph Theory, Cambridge University Press, (1985).
- [6] GOURSAT, E. A Course in Mathematical Analysis, Vol. 1 Dover Publ., New York, (1959).
- [7] SUEN, S. PhD dissertation, University of Bristol, UK, (1985).
- [8] SUEN, S. On the largest strong components in m-out digraphs, Discrete Math 94 (1991), 45-52.
- [9] SUEN, S. On large induced tree and long induced cycles in sparse random graphs, J. Combinat. Th. Ser. B. 56 (1992), 250-262.
- [10] TARJAN, R. Depth first and linear graph algorithms, SIAM. J. Comput 1 (1972), 146-160.

W. C. Stephen Suen

Department of Mathematics Carnegie Mellon University Pittsburg, PA 15213 U.S.A. ss8b@andrew.cmu.edu